
Quantified Event Automata:
Towards Expressive and Efficient Runtime Monitors

Howard Barringer1, Yliès Falcone2, Klaus Havelund3 �,

Giles Reger1��, and David Rydeheard1

1 University of Manchester, UK
2 University of Grenoble, France

3 Jet Propulsion Laboratory, California Inst. of Technology, USA

Abstract. Runtime verification is the process of checking a property on a trace

of events produced by the execution of a computational system. Runtime verifica-

tion techniques have recently focused on parametric specifications where events

take data values as parameters. These techniques exist on a spectrum inhabited by

both efficient and expressive techniques. These characteristics are usually shown

to be conflicting - in state-of-the-art solutions, efficiency is obtained at the cost

of loss of expressiveness and vice-versa. To seek a solution to this conflict we ex-

plore a new point on the spectrum by defining an alternative runtime verification

approach. We introduce a new formalism for concisely capturing expressive spec-

ifications with parameters. Our technique is more expressive than the currently

most efficient techniques while at the same time allowing for optimizations.

1 Introduction
Runtime Verification [1–5, 7–11] is the process of checking a property on a trace of

events produced by the execution of a computational system. Over the last decade, a

number of different formalisms were proposed for specifying such properties and mech-

anisms for checking traces. Early work focused on propositional events but recently

there has been a growing interest in so-called parametric properties where events carry

data values. Challenges that arise when designing a runtime verification framework

incorporating parametric properties are twofold. The first lies in the (parametric) speci-

fication formalism used to specify the property; usually one seeks expressiveness. The

second lies in the efficiency of monitoring algorithms associated with the formalism.

A spectrum of runtime verification. Specification formalisms differ in their level of ex-

pressiveness and usability and, monitoring algorithms differ in efficiency. In developing

monitoring frameworks, one can distinguish between systems such as JAVAMOP [10]

and TRACEMATCHES [1], which focus on efficiency rather than expressiveness, and

systems such as EAGLE [2], RULER [2, 5], LOGSCOPE [3] and TRACECONTRACT [4],

which focus on expressiveness rather than efficiency. The development in this paper

arose from our attempt to understand, reformulate and generalise parametric trace slic-

ing (as adopted by JAVAMOP [7]), and more generally from our attempt to explore the

spectrum between JAVAMOP and more expressive systems such as EAGLE, RULER,

LOGSCOPE and TRACECONTRACT.

� Part of the research described in this publication was carried out at Jet Propulsion Laboratory,

California Institute of Technology, under a contract with the National Aeronautics and Space

Administration.
�� The work of this author was supported by the Engineering and Physical Sciences Research

Council [grant number EP/P505208/1].

Contributions. This paper contributes to the general effort to understand the spectrum

of monitoring techniques for parametric properties. We propose Quantified Event Au-

tomata (QEA) as a formalism for defining parametric properties that is more expressive

than the formalisms behind the current most efficient frameworks such as JAVAMOP

and TRACEMATCHES. This formalism is as expressive as the formalisms behind the

most expressive frameworks, such as RULER, but is, in our opinion, more intuitive and

allows for optimisation. Additionally we include guards and assignments in our new

formalism. We present both a big-step semantics, operating on full finite traces, and a

small-step semantics, operating on the trace step-by-step. The small-step semantics acts

as a basis from which monitoring algorithms can be derived.

Paper Organization. Section 2 motivates our approach by exhibiting the limitations

of parametric trace slicing and overviews how we overcome them. We introduce QEA

in Sec. 4 by first defining Event Automata (EA) in Sec. 3. An EA defines a property

over a set of parametric events, and QEA generalise these by quantifying over some

variables in the EA. As we separate quantifications from the definition of the property

we could replace Event Automata with some other formalism, such as context-free

grammars, in the future. Sections 3 and 4 are concerned with the a big-step semantics

of our formalism, whereas Sec. 5 presents a small-step semantics, along with a notion of

acceptance in a four-valued verdict domain. Finally, we discuss related work in Sec. 6

and draw conclusions in Sec. 7.

2 Background
Runtime monitoring is the process of checking a property on a trace (finite sequence)

of events. In this context, an event records some action or snapshot from the monitored

system. A property defines a language over events and a monitor is a decision procedure

for the property. An event is said to be propositional if it consists of a simple name, e.g.,

open, and parametric if it contains data values, e.g., open(‘file42’). We name properties

and monitors in a similar way: propositional and parametric monitors, respectively.

A previous approach to parametric runtime monitoring is called parametric trace

slicing [7] (an approach taken by JAVAMOP [10]). Here a parametric monitor, from a

theoretical point of view, works by slicing its parametric input trace to a set of proposi-

tional traces that are then processed by separate propositional monitors. Let us illustrate

this approach with a simple example. Consider the parametric property stating that for

any file f , open(f) and close(f) events for that file f should alternate. This property

can be formalised as the parametric regular expression (open(f).close(f))∗. Consider

now the parametric trace open(1).close(2).close(1). In this parametric trace there

are two different instantiations of f , namely f=1 and f=2. In this case slicing produces

the following configuration consisting of two bindings associated with propositional

traces:
[f �→ 1] : open.close [f �→ 2] : close

Each of these traces are then monitored by the monitor corresponding to the proposi-

tional property (open.close)∗. It is clear that for [f �→ 2] the property does not hold.

For practical purposes, instead of mapping each binding to a propositional trace as

above, a configuration instead maps the binding to a propositional monitor state, the

state the monitor will be in after observing that propositional trace. When a monitor

receives an event it combines the event’s parameters with the variables associated with

2

that event to construct a binding (a map from variables to concrete values), and looks

up the appropriate propositional monitor state for that binding, and then applies the

propositional event in that monitor state to obtain a new state. For example, given the

above trace, the first event open(1) would be used to construct the binding [f �→ 1].
However, note that the binding constructed from an event does not necessarily match

exactly any of the bindings in the configuration. Instead, a monitor state is updated if it

is mapped to by any binding that includes the binding produced by the event. Looking

up monitor states directly from events makes a slicing approach efficient.

The following definition defines for a given trace and a given binding what propo-

sitional trace this binding is mapped to, namely the slice corresponding to that binding.

Definition 1 (Parametric Trace Slicing). Given a trace of parameterised events τ and
a binding θ, the θ-slice of τ , written τ ↓θ, is the propositional trace defined by:

ε ↓θ= ε e(θ′).τ ↓θ=
{
e.(τ ↓θ) if θ′ � θ
τ ↓θ otherwise

where ε is the empty trace, each parameterised event e(θ′) consists of an event name e
and a binding θ′, and � is the submap relation on bindings.

However, as we shall see, parametric trace slicing has two main shortcomings. First, it

is not possible to write a property where an event name is associated with two different

lists of variables, for example open(f) and open(g), as when observing an event, such

as open(1), it must be possible to construct a unique binding, such as [f �→ 1], hence

relying on only one unique variable associated with open (in this case f). Second, the

theory assumes that all variables take part in slicing - forcing their values to remain

fixed w.r.t. a monitor. Third, the theory implicitly assumes universal quantification on

all parameters, hence forbidding alternation with existential quantification. Below are

some properties that are not expressible in this parametric trace slicing setting:

Talking Philosophers - Any two philosophers may not speak at the same time - if one

starts talking another cannot start until the first stops. Given any philosophers x and

y, the property must therefore differentiate between events start(x) and start(y).
Auction Bidding - Amounts bid for an item should be strictly increasing. If bidding is

captured by the event bid(item, amount) the value given to item should be fixed

w.r.t. a monitor, but the value given to amount should be allowed to vary.
Candidate Selection - For every voter there must exist a party that the voter is a mem-

ber of, and the voter must rank all candidates for that party.

Our more general formalism allows us to express these and other properties with addi-

tional new features. We first introduce Event Automata (EA) to describe a property with

parametric events containing both values and variables. An event name can occur with

different (lists of) parameters, for example start(1), start(x) and start(y). We then

introduce Quantified Event Automata (QEA), which generalise EA by quantifying over

some of the variables, making them bound. Variables that are not quantified over, hence

free, can be rebound as a trace is analysed. This is useful for specification purposes as

we shall see. As we will always instantiate Event Automata before using them we can

treat all variables as free variables and rebind them where necessary. In theory, trace

acceptance can be decided using a set of instantiated EA generated using the QEA as a

template and replacing quantified variables with values from their domain. In practice

this approach is inefficient and we present an alternative that allows for optimisation.

3

3 Event Automata
An Event Automaton is a non-deterministic finite-state automaton whose alphabet con-

sists of parametric events and whose transitions may be labelled with guards and as-

signments. These are generalised in the next section by quantifying over zero or more

variables appearing in parametric events. Here we assume the Event Automaton has

been instantiated and all quantified variables replaced with values.

We begin by formalising the structure of Event Automata, then give a transition

semantics and define an Event Automaton’s language, finishing with three examples.

We use s to denote a tuple 〈s0, . . . , sk〉. We use X → Y and X ⇁ Y to denote sets

of total and partial functions between X and Y , respectively. We write maps (partial

functions) as [x0 �→ v0, . . . , xi �→ vi] and the empty map as []. Given two maps A and

B, the map override operator is defined as:

(A †B)(x) =

⎧⎨
⎩

B(x) if x ∈ dom(B),
A(x) if x 	∈ dom(B) and x ∈ dom(A),
undefined otherwise.

3.1 Syntax
We build the syntax from a set of propositional event names Σ, a set of values Val4,

and a set of variables Var (disjoint from Val) as follows.

Definition 2 (Symbols, Events, Alphabets and Traces). Let Sym = Val ∪ Var be
the set of all symbols (variables or values). An event is a pair 〈e, s〉 ∈ Σ × Sym∗,
written e(s). An event e(s) is ground if s ∈ Val∗. Let Event be the set of all events and
GEvent be the set of all ground events. A trace is a finite sequence of ground events.
Let Trace = GEvent∗ be the set of all traces.

We use x, y to refer to variables, s to refer to symbols, a to refer to ground events , b
to refer to events which are not necessarily ground, and σ, τ to refer to traces. Note that

we focus on finite traces. A continuously evolving system could be monitored through

snapshots of finite traces - the trace seen so far.

Bindings are maps from variables to values, i.e., elements of Bind = Var ⇁ Val .
There is a partial order � on bindings such that θ1 � θ2 iff θ1 is a submap of θ2. Guards
are predicates on bindings, i.e., total functions in Guard = Bind → B. We use θ and

ϕ to denote bindings and g to denote guards. A binding can be applied to a symbol as a

substitution – replacing the symbol if it is defined in the binding. This can be lifted to

events and used to give a definition of a ground event and an event matching:

Definition 3 (Substitution). The binding θ = [x0 �→ v0, . . . , xi �→ vi] can be applied
to a symbol s and to an event e(s) as follows:

s(θ) =

{
θ(s) if s ∈ dom(θ)
s otherwise e〈s0, . . . , sj〉(θ) = e〈s0(θ), . . . , sj(θ)〉

Definition 4 (Matching). Given a ground event a an event b, the predicate matches(a,b)
holds iff there exists a binding θ s.t. b(θ) = a. Moreover, let match(a,b) denote the
smallest such binding w.r.t � if it exists (and is undefined otherwise).

4 For example, integers, strings or objects from an Object Oriented programming language.

4

Assignments are total functions on bindings, i.e., elements of Assign = Bind → Bind .

We use γ to denote assignments. Guards and assignments may be described in suitable

languages. We do not need to specify particular languages, but will use standard pro-

gramming language notation in examples and assume that assignments maintain values

they do not explicitly update. Now we are in a position to define Event Automata (EA).

Definition 5 (Event Automat a). An EA 〈Q,A, δ, q0, F 〉 is a tuple where Q is a finite
set of states, A ⊆ Event is a finite alphabet, δ ∈ (Q×A×Guard×Assign×Q) is
a finite set of transitions, q0 ∈ Q is an initial state, and F ⊆ Q is a set of final states.

3.2 Semantics
We give the semantics of EA within the context of an EA E = 〈Q,A, δ, q0, F 〉.
Definition 6 (Configurations and Transition Relation). We define configurations as
elements of the set Config = Q × Bind . Let →⊆ Config × GEvent × Config be
a relation on configurations s.t. configurations 〈q, ϕ〉 and 〈q′, ϕ′〉 are related by the
ground event a, written 〈q, ϕ〉 a→ 〈q′, ϕ′〉, if and only if

∃b ∈ A, ∃g ∈ Guard, ∃γ ∈ Assign : (q,b, g, γ, q′) ∈ δ ∧
matches(a,b) ∧ g(ϕ † match(a,b)) ∧ ϕ′ = γ(ϕ † match(a,b)).

Let the transition relation →E be the smallest relation containing → such that for any
event a and configuration c if �c′ : c a→ c′ then c

a→E c.
The relation →E is lifted to traces. For any two configurations c and c′, c ε→E c

always holds, and c
a.τ→E c′ holds iff there exists a c′ such that c a→E c′′ and c′′ τ→E c′.

In an EA, a configuration contains the values bound to the variables. These bindings are

local to each EA – notably there is no shared global state. A ground event a can take

〈q, ϕ〉 into 〈q′, ϕ′〉 if there exists a transition in δ starting in q, s.t. the events match, the

guard is satisfied, and the new configuration contains the binding given by the assign-

ment and state q′. Note that EA are non-deterministic.

Note. When we encounter an event for which there is no matching transition in the

automaton we wait in the current state. There are alternative accounts, which are equiv-

alent in the sense that we can translate automata between the different semantics. We

have made this choice as our initial experience is that this makes writing specifications

more straightforward as, when defining a property, we need not write transitions for

events which have no role in the specification.

Let us now define the language of an EA. An event denotes a set of ground events

– for example, the event start(x) denotes the set {start(v) | v ∈ Val} and a ground

event denotes the singleton set containing itself. We use this notion to define the ground
alphabet of an EA. Let the ground alphabet of the EA E be

ground(E) = {a ∈ GEvent | ∃b ∈ A : matches(a,b)}.
We say that there is a run on τ reaching a configuration c iff 〈q0, []〉 τ→E c. An EA

accepts a trace if there is a run on that trace reaching a configuration in a final state.

Definition 7 (Event Automaton Language). The language of the Event Automaton E
is noted and defined as

L(E) = {τ ∈ ground(E)∗ | ∃〈q, ϕ〉 ∈ Config : 〈q0, []〉 τ→E 〈q, ϕ〉 ∧ q ∈ F}.

5

1 2

3

start(x)

stop(y) y=x

start(y) y �=x

(a) Talking Philosophers

1 2

3

bid(‘hat’, max)
bid(‘hat’, new) new>max

max:=new

bid(‘hat’, new) new≤max

(b) Auction Bidding

1

2 3

4

member(‘tom’,‘red’)

candidate(‘flo’,‘red’)

rank(‘tom’,‘flo’,r)

(c) Candidate Selection

Fig. 1: Three EAs. We use shaded states to indicate final states and the notation
guard

assignment for writing guards and assignments on transitions.

3.3 Examples
To illustrate Event Automata and their languages, consider the three examples in Sec.

2, Talking Philosophers, Auction Bidding and Candidate Selection. Recall that all vari-

ables occuring in an EA are unquantified (free).

Talking Philosophers. The EA Phil in Fig. 1a captures the property that no two

philosophers can be talking at the same time. The philosopher currently talking is

recorded in variable x, which can only be rebound after that philosopher stops talking.

If a different philosopher starts talking before this happens this is an error. Consider the

trace τ1 = start(1).stop(1).start(2). This is in L(Phil) as the run 〈1, []〉 start(1)−→
〈2, [x �→ 1]〉 stop(1)−→ 〈1, [x �→ 1, y �→ 1]〉 start(2)−→ 〈2, [x �→ 2, y �→ 1]〉 ends in a

final state. However, the trace τ2 = start(1).start(2) is not in L(Phil) as the run

〈1, []〉 start(1)−→ 〈2, [x �→ 1]〉 start(2)−→ 〈3, [x �→ 1, y �→ 2]〉 does not end in a final state.

Auction Bidding. The EA Hat in Fig. 1b captures the property that bids on item

‘hat’ must be strictly increasing. Consider the trace τ3 = bid(‘hat’, 1).bid(‘hat’, 10).

bid(‘hat’, 5). The only run on τ3 is 〈1, []〉 bid(‘hat’,1)−→ 〈2, [max �→ 1]〉 bid(‘hat’,10)−→
〈2, [max �→ 10,new �→ 10]〉 bid(‘hat’,5)−→ 〈3, [max �→ 10,new �→ 5]〉. As state 3 is non-

final, τ3 	∈ L(Hat). In this example, a guard is used to capture the failing behaviour out

of state 2 and an assignment is used to keep track of the maximum bid.

Candidate Selection. The EA Candi in Fig. 1c captures the property that voter tom is

a member of the red party, candidate flo is a candidate for the red party and voter tom

ranks flo in position r - a variable. State 2 is accepting as tom only needs to rank flo

if she is a candidate for the red party. The more general case is dealt with in the next

section by replacing values ‘tom’, ‘flo’, and ‘red’ by quantified variables.

4 Quantified Event Automata
We now define Quantified Event Automata (QEA), which generalise EA by quantifying

over zero or more of the variables used in an EA. Acceptance is decided by replacing

these quantified variables by each value in their domain to generate a set of EA and then

6

using the quantifiers to determine which of these EA must accept the given trace. We

begin by considering the syntax of QEA and then present their acceptance condition,

finishing by returning to our three running examples.

4.1 Syntax
A QEA consists of an EA with some (or none) of its variables quantified by ∀ or ∃. The

domain of each quantified variable is derived from the trace. The variables of an EA are

those that appear in its alphabet:

vars(E) = {x | ∃e(s) ∈ E.A : x ∈ s ∧ x ∈ Var}.
Not all variables need to be quantified. Unquantified variables are left free in E and can

be rebound during the processing of the trace - as seen in the previous section.

Definition 8 (Quantified Event Automaton). A QEA is a pair 〈Λ,E〉 where E is an
EA and Λ ∈ ({∀, ∃}×vars(E)×Guard)∗ is a list of quantified variables with guards.

A QEA is well-formed if Λ contains each variable in vars(E) at most once. In the

following, we consider a QEA Q = 〈Λ,E〉.
4.2 Acceptance
In Sec. 3 we defined the language of an EA. The intuitive idea here is to use the EA E
in QEA Q as a template for generating a set of EA and then check if the trace is in the

language of each generated EA. To do this, quantified variables in E are replaced by

the values taken from the domain of these quantified variables. First we introduce the

concept of EA instantiation to replace variables in E with values.

Definition 9 (Event Automaton Instantiation). Given a binding θ, let E(θ) = 〈Q,
A(θ), δ(θ), q0, F 〉 be the θ-instantiation of E where

A(θ) = {b(θ) | b ∈ A}
(q,b(θ), g′, γ′, q′) ∈ δ(θ) iff (q,b, g, γ, q′) ∈ δ and g′(ϕ) = g(θ † ϕ)

and γ′(ϕ) = γ(θ † ϕ).
The domain of each quantified variable is derived from the values in the trace. The

intuition here is that the events start(x) and stop(x) allow us to identify the values

that the quantified variable x can take. Therefore, the domain for x is computed by

finding all values bound to x when matching any event in the trace with any event in

the alphabet of the EA that uses x.

Definition 10 (Derived Domain). The derived domain of a trace τ is a map from vari-
ables quantified in Λ to sets of values:

Dom(τ)(x) = {match(a,b)(x) | b = e(..., x, ...) ∈ A ∧ a ∈ τ ∧ matches(a,b)}.
Each instantiation of E is concerned only with the behaviour of a small set of values (or

the events using those values) but a trace can contain other values - that is for binding

θ a trace can contain events not in ground(E(θ)). We need to restrict the trace so that

we can test whether it is in the language of E(θ). We do this by filtering out any event

not in ground(E(θ)). Note that our notion of projection is w.r.t. a set of parametric

events (captured by an EA), which differs from the projection in parametric trace slicing

(Definition 1) done w.r.t. a binding. Therefore, we are able to deal with event names

which are associated with multiple different variable lists.

7

1 2

3∀item

bid(item , max)

bid(item , new) new>max
max :=new

bid(item , new) new≤max

(a) Auction Bidding QEA

1

2 3

4

∀v , ∃p, ∀c

member(v, p)

candidate(c, p)

rank(v, c, r)

(b) Candidate Selection QEA
Fig. 2: Two QEAs.

Definition 11 (Projection). The projection of τ ∈ Trace w.r.t. E is defined as:

ε ↓E= ε a.τ ↓E=
{
a.(τ ↓E) if a ∈ ground(E),
(τ ↓E) otherwise.

A trace τ satisfies the property w.r.t. a binding θ iff τ ↓E(θ)∈ L(E(θ)). Note that we

could use a different formalism to define such a language, or alter the semantics of EA,

and this notion of satisfaction would remain unchanged. Finally, the quantifiers use the

derived domain to inductively generate bindings and dictates which of these bindings

the trace must satisfy the property with respect to.

Definition 12 (Acceptance). Q accepts a ground trace τ if τ |=[] Λ.E where |=θ is
defined as

τ |=θ (∀x : g)Λ′.E iff for all d in Dom(τ)(x) if g(θ † [x �→ d]) then τ |=θ†[x �→d] Λ
′.E

τ |=θ (∃x : g)Λ′.E iff for some d in Dom(τ)(x) g(θ † [x �→ d]) and τ |=θ†[x �→d] Λ
′.E

τ |=θ ε.E iff τ ↓E(θ)∈ L(E(θ))
Universal quantification (resp. existential) means that a trace must satisfy the property

w.r.t. all (resp. at least one) generated bindings.

4.3 Examples
We revisit the examples introduced in Sec. 2 and used in Sec. 3.

Talking Philosophers The EA in Fig. 1a can be treated directly as a QEA with no

quantifications - in this case a single global value (x) is used to record the currently

talking philosopher and we are not concerned with the behaviour of individual philoso-

phers in isolation.

Auction Bidding The QEA in Fig. 2a captures the general Auction Bidding property.

The quantifications indicate that only the item variable should be instantiated, thus

leaving the max and new variables free to be rebound whilst processing the trace.

Candidate Selection The QEA Select in Fig 2b captures the general Candidate Se-

lection property that for every voter there is a party that the voter is a member of, and

the voter ranks all candidates for that party. Let us consider the following trace τ4

member(‘tom’,‘red’).member(‘ali’,‘blue’).candidate(‘jim’,‘red’).candidate(‘flo’,‘red’).
candidate(‘don’,‘blue’).rank(‘tom’,‘jim’,1).rank(‘ali’,‘don’,1).

In this trace ali ranks all candidates for the blue party but tom only ranks one of the can-

didates for the red party. The derived domain is Dom(τ4) = [v �→ {‘tom’,‘ali’}, p �→ {

8

‘red’, ‘blue’ }, c �→ {‘jim’, ‘flo’, ‘don’}] leading to 12 possible bindings. For space

reasons we do not enumerate these bindings here, but leave it to the reader to verify

that for five of these bindings the instantiated EA accepts the trace, and that adding the

event rank(‘tom’,‘flo’,2) to the trace would make the trace accepting.

5 Step-wise Evaluation of QEA
In the previous section, we presented an acceptance condition to decide whether a trace

satisfies the property represented by a QEA. This first built up the derived domain by

inspecting the trace, then used bindings generated from this domain to generate a set

of instantiated EA, checked whether the trace was in the language of each instantiated

EA and finally used this information, along with quantifiers, to decide whether the trace

was accepted. This requires us to pass over the trace at least twice - first to generate the

bindings and then to check the EAs instantiated with them.

For runtime verification purposes, we need to combine these two passes into one –

passing over the trace as it is produced. To do this we process each event when it arrives

by building the derived domain and keeping track of the status of each instantiated EA

on the fly. To decide the acceptance of the trace received up to a certain point we need

to compute the information required by Def. 12. This can be split into two concerns

1. Building the Derived Domain. When a new event is received the values it con-

tains must be recorded. These values are obtained by matching (as per Def. 4) the

received event with the events in the alphabet of the given EA.

2. Tracking the status of Instantiated EAs. The relevant bindings for Def. 12 are those

that can be generated from the derived domain and that bind all quantified variables

- we call such bindings total. We need to track the status of the EA instantiated with

each such total binding.

For efficiency reasons, we capture the derived domain in the bindings that can be built

from it, instead of storing this separately. The status of each instantiated EA can be

captured by the configurations reachable by the trace received so far projected with

respect to that instantiated EA. In the following we break this down into three steps:

1. Generating bindings and associating with them the relevant projected traces

2. Adapting this approach to generate configurations rather than projected traces

3. Showing how acceptance can be decided based on these configurations

When considering runtime verification, efficiency is obviously a major concern. We do

not present an optimised algorithm here, but keep optimisation in mind when discussing

design decisions. The approach presented here can be optimised in a number of ways -

note that the main structure of the approach is similar to that taken by JAVAMOP, and

therefore many optimisations applied in this tool would be applicable here.

We illustrate how to monitor a trace in a step-wise fashion by discussing the Can-

didate Selection example. We consider how the data structures relevant for monitoring

are built up for the QEA Select in Fig 2b and the trace τ4 given on page 8.

5.1 Generating Projections
In this section we show how to use a trace and a QEA to construct a monitoring state,

which associates bindings with projected traces:

MonitoringState = Binding ⇁ Trace

9

Partial bindings Total bindings

[] �→ ε [v �→ t, p �→ r, c �→ j] �→ mem(t,r).can(j,r).ran(t,j,1)

[v �→ t, p �→ r] �→ mem(t,r) [v �→ t, p �→ r, c �→ f] �→ mem(t,r).can(f,r)

[v �→ a, p �→ b] �→ mem(a,r) [v �→ t, p �→ r, c �→ d] �→ mem(t,r)

[p �→ r, c �→ j] �→ can(j,r) [v �→ t, p �→ b, c �→ d] �→ can(d,b)

[p �→ r, c �→ f] �→ can(f,r) [v �→ a, p �→ r, c �→ j] �→ can(j,r)

[p �→ b, c �→ d] �→ can(d,b) [v �→ a, p �→ r, c �→ f] �→ can(f,r)

[v �→ a, p �→ b, c �→ j] �→ mem(a,b)

[v �→ a, p �→ b, c �→ f] �→ mem(a,b)

[v �→ a, p �→ b, c �→ d] �→ mem(a,b).can(d,b).ran(a,d,1)

Table 1: The monitor state generated by monitoring τ4 for Select. Event names have

been truncated to three letters and parameter values to their first letter.

The monitoring state for our example is given in Table 1. Note that the bindings contain

quantified variables only. Let us consider how this monitoring state was built starting

with the empty monitoring state [] �→ ε. We first examine the QEA Select and note

that its alphabet is {member(v, p), candidate(c, p), rank(v, c, r)}.

On observing τ4’s first event, member(‘tom’,‘red’), we construct the binding [v �→
‘tom’, p �→ ‘red’] by matching with member(v,p). This binding is added to the monitor-

ing state, along with the associated projected trace. We process τ4’s second event in a

similar way to add:
[v �→ ‘tom’, p �→ ‘red’] �→ member(‘tom’, ‘red’)
[v �→ ‘ali’, p �→ ‘blue’] �→ member(‘ali’, ‘blue’)

We did not add single bindings such as [v �→ ‘tom’] as the projected traces associated

with these bindings would be empty, and therefore recording them would be redundant.

We only record bindings for which the projected trace is non-empty. On observing τ4’s

third event, candidate(‘jim’,‘red’), we construct the binding [p �→ ‘red’, c �→ ‘jim’]
by matching with candidate(c,p) and add this to the monitoring state:

[p �→ ‘red’, c �→ ‘jim’] �→ candidate(‘jim’, ‘red’)

We then combine this binding with the existing binding [v �→ ‘tom’, p �→ ‘red’] to get

the binding [v �→ ‘tom’, c �→ ‘jim’, p �→ ‘red’]. The projected trace for this new binding

is the trace associated with the original binding extended with the current event.

[v �→ ‘tom’, p �→ ‘red’, c �→ ‘jim’] �→ member(‘tom’, ‘red’).candidate(‘jim’, ‘red’)

To see why we do this recall that the submap relation � gives a partial order on bindings

– illustrated in Fig.3. By definition, the projected trace for a new binding will include

all the projected traces for existing bindings it subsumes w.r.t. �, and when it is created

all such events are captured by the largest such existing binding. Like JAVAMOP we

call this notion maximality. Therefore, the projected trace mapped to by a new binding

must extend the projected trace mapped to by the maximal existing binding.

As noted earlier, we must record any binding that can be built from the derived

domain that has a non-empty projection. We can build two such bindings by combining

submaps of [v �→ ‘tom’, p �→ ‘red’] with existing bindings as follows:

[v �→ ‘ali’, p �→ ‘red’, c �→ ‘jim’] �→ candidate(‘jim’, ‘red’)
[v �→ ‘ali’, p �→ ‘blue’, c �→ ‘jim’] �→ member(‘ali’, ‘blue’)

10

[]

[v �→ ‘tom’, p �→ ‘red’][c �→ ‘jim’, p �→ ‘red’] [c �→ ‘flo’, p �→ ‘red’]

[v �→ ‘tom’, c �→ ‘jim’, p �→ ‘red’] [v �→ ‘tom’, c �→ ‘flo’, p �→ ‘red’]

Fig. 3: A subset of bindings from Table 1 ordered by the submap relation.

We now formalise how these bindings and projected traces are generated. We will

need to select the quantified part of a binding, hence, for an assumed quantifier list Λ,

let quantified(θ) = [(x �→ v) ∈ θ | x ∈ vars(Λ)] where vars(Λ) = {x ∈ V ar |
(, x,) ∈ Λ}. A binding θ is total if dom(θ) = vars(Λ) and partial otherwise.

An event is added to the projection for a binding θ if it matches with an event in

E(θ).A and the resulting binding does not contain quantified variables - this second part

is necessary as θ may be partial. For example, member(‘tom’,‘red’) is not added to the

projection for [] as the binding that makes it match with member(c, p) binds c and p.

Definition 13 (Event Relevance). A ground event a is relevant to a binding θ iff
∃b ∈ A(θ) : matches(a,b) ∧ quantified(match(a,b)) = []

To extend a binding θ we first find all bindings that match the received event with an

event in E(θ).A, and then compute all possible extensions to θ based on these bindings.

If the received event is relevant to a generated new binding we add this event to the

previous trace, otherwise the previous trace is just copied.

Definition 14 (Extending a Binding). Let direct(θ,a) be the bindings that directly
extend θ given a, defined in terms of those bindings that can be built from a.

from(θ,a) = {quantified(match(a,b)) | b ∈ A(θ)}
direct(θ,a) = {θ † θ′ | ∃θ′′ ∈ from(θ,a) : θ′ � θ′′ ∧ θ′ 	= []}

Let all(θ,a) be the smallest superset of direct(θ,a) containing θ1†θ2 for all compatible
θ1 and θ2 in direct(θ,a). The required extensions extend(a, θ, σ) are given by

(θ′ �→ σ′) ∈ extend(a, θ, σ) iff θ′ ∈ all(θ,a)∧ σ′=
{
σ.a if ∃θ′′ ∈ from(θ,a) : θ′′ � θ′

σ otherwise
On receiving a new event the next monitoring state is built by iterating through the cur-

rent monitoring state and, for each binding, adding the event to its associated projected

trace if it is relevant and adding new extending bindings as described above. To ensure

that new bindings extend the maximal existing binding we iterate through bindings in

the reverse order defined by � and only add bindings that do not already exist. This en-

sures that the maximal existing binding for a new binding will always be encountered

first. By adding all bindings that extend existing bindings we ensure that the derived

domain is correctly recorded and that all necessary total bindings will be created.

Definition 15 (Single Step Monitoring Construction). Given ground event a and
monitoring state M . Let θ1, . . . , θm be a linearisation of the domain of M i.e. if θj � θk
then j > k and every element in the domain of M is present once in the sequence, hence
m = |M |. We define (a ∗M) = Nm ∈ MonitoringState where Nm is iteratively de-
fined as follows for i ∈ [1,m].

N0 = [] Ni = Ni−1 † Addi †
{

[θi �→ M(θi).a] if a is relevant to θi
[θi �→ M(θi)] otherwise

where Addi = [(θ′ �→ σ′) ∈ extend(a, θi,M(θi)) | θ′ /∈ dom(Ni−1)]

11

[] �→ 〈1, []〉 [p �→ b, c �→ d] �→ 〈1, []〉 [v �→ t, p �→ b, c �→ d] �→ 〈1, []〉
[p �→ r, c �→ j] �→ 〈1, []〉 [v �→ a, p �→ b, c �→ d] �→ 〈4, [r �→ 1]〉 [v �→ a, p �→ r, c �→ j] �→ 〈1, []〉
[v �→ t, p �→ r] �→ 〈2, []〉 [v �→ t, p �→ r, c �→ j] �→ 〈4, [r �→ 1]〉 [v �→ a, p �→ r, c �→ f] �→ 〈1, []〉
[p �→ r, c �→ f] �→ 〈1, []〉 [v �→ t, p �→ r, c �→ f] �→ 〈3, []〉 [v �→ a, p �→ b, c �→ j] �→ 〈2, []〉
[v �→ a, p �→ b] �→ 〈2, []〉 [v �→ t, p �→ r, c �→ d] �→ 〈2, []〉 [v �→ a, p �→ b, c �→ f] �→ 〈2, []〉
Table 2: The monitor lookup generated by monitoring τ4 for Select. Parameter values

have been truncated to their first letter.

Finally, for the input trace the construction of Def. 15 is applied to each event, starting

with an initial monitoring state - the empty binding with the empty projection.

Definition 16 (Stepwise Monitoring). For a trace τ = a0.a1 . . . an we define the final
monitoring state Mτ as an ∗ (. . . ∗ (a0 ∗ [[] �→ ε]) . . .).

The final monitoring state Mτ contains the information required to decide whether the

trace τ is accepted (as specified in Def. 12) (discussed in Sec. 5.3).

5.2 Generating Configurations
Algorithm 1 Finding the next configura-

tions when adding an event to a projection.

function NEXT(θ : Binding, a : GEvent,

C : Set[Config]) :Set[Config]

next← ∅
for 〈q, ϕ〉 in C do

for (q1,b, g, γ, q2) ∈ E.δ do
if q1=q ∧ matches(a,b(θ)) then

ϕ′← ϕ † match(a,b(θ))
if quantified(ϕ′)=[] and

g(unquantified(ϕ′)) then
next← next + 〈q2,
γ(unquantified(ϕ′))〉

if no transitions are taken then
next← next ∪〈q, ϕ〉

return next

In the previous section we associated

bindings with projected traces. However,

using projected traces directly would not

be efficient, especially as we would need

to run through each projected trace to

decide the status of acceptance on each

step. Instead, we record the configura-

tions reachable by those projections. To

do this we define a new structure:

MonitorLookup = Binding ⇁ P(Config)

The monitor lookup for our example is

given in Table 2. We adapt the con-

struction in the previous section to build

a monitor lookup by defining a func-

tion in Algorithm 1 that computes the

next configurations for a binding given a received event. Let unquantified(θ) =
θ\quantified(θ). We can modify Def. 15 to produce a monitoring lookup instead

of a monitoring state by replacing the inductive definition of Ni with

Ni = Ni−1 † Addi † [θi �→ NEXT(θi,a,M(θi))]

where Addi = [θ �→ NEXT(θ,a,M(θi)) | θ ∈ all(θi,a)]. This processes the projected

trace for a binding as it is produced as NEXT(θ,a,C) gives all configurations reachable

by event a from configurations in C on E(θ), staying in the same configuration if no

transition can be taken. Because of this last point no changes are made if the event is

not relevant to the binding. The check that quantified(ϕ′) = [] ensures that no new

quantified variables are bound when taking a transition. Note that this function relies

on the wait semantics of EA and could not necessarily be used without modification if

we were to replace EA with an alternative formalism - the previous construction only

assumes an alphabet of events to construct projected traces.

12

5.3 Acceptance
Here we consider when a monitor lookup is accepted. We adapt the notion of accep-

tance given in Def. 12 to detect success or failure as soon as it is possible. We define a

four valued verdict domain containing the classifications Strong Success, Weak Success,

Strong Failure and Weak Failure. The strong versions of success and failure indicate that

no extensions of the trace can alter the verdict. For example, τ3 is strongly failing for

the QEA in Fig. 2a as no extensions will be accepted. We first identify the special states

of E such that all extensions of trace τ reaching that state will be in L(E) iff τ is.

Definition 17 (Strong Success and Failure States). Let reach(q) be the set of reach-
able states of q ∈ Q. Let strongS = {q ∈ F | reach(q) ⊆ F} be the strong success
states. Let strongF = {q ∈ Q\F | reach(q) ∩ F = ∅} be the strong failure states.
Note that it is not necessarily the case that (strongS ∪ strongF) = Q.

If all quantifiers are universal then all total bindings must reach successful configu-

rations, and if one cannot (i.e., is in a strongly failing state) a strong failure can be

reported, similarly if all quantifiers are existential then a single total binding reaching a

configuration in a strongly successful state means that strong success can be reported.

Strong success or failure cannot be reported where we have a mix of existential and

universal quantification.

Definition 18 (Monitor Lookup Classification). We define the function Check(L,Q)
to decide whether a monitor lookup L satisfies a QEA Q. Let uni be true if all quanti-
fiers in Q.Λ are universal, exi be true if they are all existential and G be the combina-
tion of all guards in Q.Λ, i.e, G(θ) iff ∀(, , g) ∈ Λ : g(θ).

Check(L,Q) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

StrongSuccess iff exi ∧ ∃θ ∈ dom(L) : G(θ)
∧ ∃〈q, ϕ〉 ∈ L(θ) : q ∈ StrongS

StrongFailure iff uni ∧ ∃θ ∈ dom(L) : G(θ)
∧ ∀〈q, ϕ〉 ∈ L(θ) : q ∈ StrongF

WeakSuccess iff not a strong result and L |=[] Q.Λ
WeakFailure iff not a strong result and L 	|=[] Q.Λ

for L |=θ Λ, defined as

L |=θ (∀x : g)Λ′ iff for all d in DL(x) if g(θ † [x �→ d]) then L |=θ†[x �→d] Λ
′

L |=θ (∃x : g)Λ′ iff for some d in DL(x) g(θ † [x �→ d]) and L |=θ†[x �→d] Λ
′

L |=θ ε iff
{∃〈q, ϕ〉 ∈ L(θ) : q ∈ E.F if θ ∈ dom(L)
q0 ∈ F otherwise

where DL(x) = {θ(x) | θ ∈ dom(L) ∧ x ∈ dom(θ)}
Note that if θ /∈ dom(L) then there were no events relevant to θ in the trace and there-

fore the projected trace for θ is empty. An efficient algorithm for computing Check(L,Q)
would keep track of the current status and update this whenever a relevant change is

made to the monitor lookup, rather than recomputing it on each step.

The monitor lookup in Table. 2 is weakly failing. The monitor lookup for the trace

τ4.rank(‘tom’, ‘flo’, 2) is weakly successful as this changes the configuration associ-

ated with [c �→ t, p �→ r, c �→ f] to 〈4, [r �→ 2]〉 and then tom ranks all candidates for

the red party and ali ranks all candidates for the blue party. Observe that it is important

that state 2 is accepting – as voters only need to rank candidates for the given party.

13

6 Related Work

QEA extends the parametric trace slicing approach [7] taken by JAVAMOP [10] by al-

lowing event names to be associated with multiple different variable lists, by allowing

non-quantified variables to vary during monitoring, and by allowing existential quantifi-

cation in addition to universal quantification. This results in a strictly more expressive

logic. JAVAMOP can be considered as a framework supporting parameterization for any

propositional logic, provided as a plugin. QEA is similarly composed of quantification

added to event automata, which can be replaced with other forms of logic. Parametric

trace slicing can be seen as a special case of our notion of projection used to define

whether a trace is in the language of a monitor for some binding.

TRACEMATCHES [1] is an extension of AspectJ where specifications are given

as regular expressions over pointcuts. Parametric properties are monitored rather effi-

ciently, but TRACEMATCHES, like JAVAMOP, suffers from the the limitation that each

event name is associated with a unique list of variables.

A number of expressive techniques supporting data parameterization are based on

rewriting. EAGLE [2] is based on rewriting of temporal logic formulas. For each new

event, a formula is rewritten into a new formula that has to hold in the next step.

RULER [2, 5] supports a specification language based on explicit rewrite-rules. Param-

eterized state machines are supported by LOGSCOPE [3] and TRACECONTRACT [4].

TRACECONTRACT is defined as an internal DSL in Scala (an API), re-using Scala’s

language constructs, including for example pattern matching. In both cases, states are

explicitly parameterized with data, similar to how for example functions in a program-

ming language are parameterized. A variant of LOGSCOPE has been created (not de-

scribed in [3]) where the notion of maximality can be encoded by allowing transitions to

refer to the presence (or non-presence) of other states with specific bindings as guards.

JLO [13] is a parameterized LTL, from which monitors are generated. A formula is

rewritten into a new formula for each new event, as in EAGLE. JLO events are defined

by pointcuts inspired by aspect-oriented programming, and monitors are generated as

AspectJ aspects. An embedding of LTL in Haskell is described in [14]. It is similar

to TRACECONTRACT, but whereas TRACECONTRACT handles data parameterization

by re-using Scala’s built-in notion of partial functions and pattern matching, [14] in-

troduces a concept called formula templates instantiated for all possible permutations of

propositions. Stolz introduced temporal assertions with parametrized propositions [12]

with a similar aim of adding free variables and quantification to a runtime monitor-

ing formalism (next-free LTL). The main distinction wrt. this work is the treatment of

quantification - in [12] the domain of quantification is based on the current state only.

In Sec. 5 we use a four-valued verdict domain, which have been explored previously

in the context of runtime monitoring, for example in [6], also RULER uses a four-valued

logic.

7 Conclusion and Future Work

We have introduced a new formalism for parametric runtime monitoring that is more

expressive than the current most efficient techniques. We have presented both big-step

and small-step semantics for our new formalism. Although not described in this pa-

14

per, we have used these small-step semantics to implement a basic runtime monitoring

algorithm in Scala and carried out initial testing.

We plan to explore four main areas of future work. Firstly, we intend to explore fur-

ther the language theoretic properties of QEA. Secondly, we wish to explore different

efficient runtime monitoring implementations. As our approach generalises the para-

metric trace slicing approach we may adapt optimisations implemented in JAVAMOP.

Our stepwise construction also allows for alternative optimisations. Thirdly, we wish

to consider the utility of QEA as a specification language. So far we have structured

the development to separate EA, which define properties of specific sets of values, and

QEA which generalise these. We may exploit this separation to replace EA with dif-

ferent formalisms, such as regular or context-free grammars, leading to a more general

framework for specifying properties. These replacements would be to increase the us-

ability rather than expressiveness of the framework. Finally, whilst developed in the

context of runtime verification, the ideas in this paper appear to be relevant to specifi-

cation mining (attempting to derive specifications by examining patterns in traces) and

we intend to explore this link further.

References

1. C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhoták, O. de Moor,

D. Sereni, G. Sittampalam, and J. Tibble. Adding trace matching with free variables to

AspectJ. SIGPLAN Not., 40:345–364, October 2005.
2. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verification. In

VMCAI, pages 44–57, 2004.
3. H. Barringer, A. Groce, K. Havelund, and M. Smith. Formal analysis of log files. Journal of

Aerospace Computing, Information, and Communication, 2010.
4. H. Barringer and K. Havelund. Tracecontract: a Scala DSL for trace analysis. In Proc. of the

17th international conference on Formal methods, pages 57–72, Berlin, Heidelberg, 2011.
5. H. Barringer, D. Rydeheard, and K. Havelund. Rule systems for run-time monitoring: from

EAGLE to RuleR. J Logic Computation, 20(3):675–706, June 2010.
6. A. Bauer, M. Leucker, and C. Schallhart. The good, the bad, and the ugly, but how ugly is

ugly? In Proceedings of the 7th international conference on Runtime verification, RV’07,

pages 126–138, Berlin, Heidelberg, 2007. Springer-Verlag.
7. F. Chen and G. Roşu. Parametric trace slicing and monitoring. In TACAS ’09, pages 246–261,

Berlin, Heidelberg, 2009.
8. K. Havelund and A. Goldberg. Verify your runs. In Verified Software: Theories, Tools,

Experiments, VSTTE 2005, pages 374–383, Berlin, Heidelberg, 2008.
9. M. Leucker and C. Schallhart. A brief account of runtime verification. Journal of Logic and

Algebraic Programming, 78(5):293–303, may/june 2008.
10. P. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu. An overview of the mop runtime

verification framework. J Software Tools for Technology Transfer, pages 1–41, 2011.
11. Runtime Verification. http://www.runtime-verification.org, 2001-2011.
12. V. Stolz. Temporal assertions with parametrized propositions*. J. Log. and Comput., 20:743–

757, June 2010.
13. V. Stolz and E. Bodden. Temporal assertions using AspectJ. In Proc. of the 5th Int. Workshop

on Runtime Verification (RV’05), volume 144(4) of ENTCS, pages 109–124. Elsevier, 2006.
14. V. Stolz and F. Huch. Runtime verification of concurrent Haskell programs. In Proc. of the

4th Int. Workshop on Runtime Verification (RV’04), volume 113 of ENTCS, pages 201–216.

Elsevier, 2005.

15

